Math 53: Multivariable Calculus

```
Worksheet for 2021-12-01
```

Warm-up

Question 1. Evaluate the integral $\int_0^1 \int_0^1 e^{\max(x^2, y^2)} dx dy$ where $\max(x, y)$ means the larger of x, y at each point.

Question 2. Call a parametric curve $\mathbf{r}(t)$ a *flow curve* of a vector field **F** if, at all times *t*, we have

$$\mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t)).$$

In other words, the velocity vector is always equal to F at all points along the curve.

- (a) Find a flow curve of $\mathbf{F} = \langle -\gamma, x \rangle$ that passes through the point (1,1). Hint: what does this vector field look like?
- (b) Is it possible for a flow curve of a vector field to intersect itself / form a loop? What if the vector field is conservative?

Computations

Problem 1. Let $\mathbf{F} = \langle a, b, c \rangle$ where a, b, c are constants. Let D be the region $x^2 + y^2 + z^2 \le 1$ and let E be the solid cube $-2 \le x, y, z \le 2.$

- (a) Compute $\iint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, dS$ and $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} \, dS$. (b) Compute $\iint_{\partial D} |\mathbf{F} \cdot \mathbf{n}| \, dS$ and $\iint_{\partial E} |\mathbf{F} \cdot \mathbf{n}| \, dS$.

As usual, we orient ∂D and ∂E outwards.

Problem 2. Let $\mathbf{r}(t)$ parametrize the space curve *C*, with $|\mathbf{r}'(t)| = 1$ for all *t*.

(a) If f(x, y, z) is a function on \mathbb{R}^3 , show that

$$\frac{\mathrm{d}}{\mathrm{d}t}(f(\mathbf{r}(t))) = D_{\mathbf{r}'(t)}f.$$

(b) Suppose that $\mathbf{r}(t)$ parametrizes the curve of intersection of 2z = x + y + 3 and $z^2 = x^2 + y^2$ with $\mathbf{r}(0) = (3, 4, 5)$ and $|\mathbf{r}'(0)| = 1$, counterclockwise when viewed from above. Find dz/dt at t = 0. (You don't really need the previous part to do this.)