Worksheet for 2021-12-01

Warm-up

Question 1. Evaluate the integral $\int_{0}^{1} \int_{0}^{1} e^{\max \left(x^{2}, y^{2}\right)} \mathrm{d} x \mathrm{~d} y$ where $\max (x, y)$ means the larger of x, y at each point.
Question 2. Call a parametric curve $\mathbf{r}(t)$ a flow curve of a vector field \mathbf{F} if, at all times t, we have

$$
\mathbf{r}^{\prime}(t)=\mathbf{F}(\mathbf{r}(t))
$$

In other words, the velocity vector is always equal to \mathbf{F} at all points along the curve.
(a) Find a flow curve of $\mathbf{F}=\langle-y, x\rangle$ that passes through the point $(1,1)$. Hint: what does this vector field look like?
(b) Is it possible for a flow curve of a vector field to intersect itself / form a loop? What if the vector field is conservative?

Computations

Problem 1. Let $\mathbf{F}=\langle a, b, c\rangle$ where a, b, c are constants. Let D be the region $x^{2}+y^{2}+z^{2} \leq 1$ and let E be the solid cube $-2 \leq x, y, z \leq 2$.
(a) Compute $\iiint_{\partial D} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$ and $\iint_{\partial E} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$.
(b) Compute $\iint_{\partial D}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$ and $\iint_{\partial E}|\mathbf{F} \cdot \mathbf{n}| \mathrm{d} S$.

As usual, we orient ∂D and ∂E outwards.
Problem 2. Let $\mathbf{r}(t)$ parametrize the space curve C, with $\left|\mathbf{r}^{\prime}(t)\right|=1$ for all t.
(a) If $f(x, y, z)$ is a function on \mathbb{R}^{3}, show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(f(\mathbf{r}(t)))=D_{\mathbf{r}^{\prime}(t)} f .
$$

(b) Suppose that $\mathbf{r}(t)$ parametrizes the curve of intersection of $2 z=x+y+3$ and $z^{2}=x^{2}+y^{2}$ with $\mathbf{r}(0)=(3,4,5)$ and $\left|\mathbf{r}^{\prime}(0)\right|=1$, counterclockwise when viewed from above. Find $\mathrm{d} z / \mathrm{d} t$ at $t=0$. (You don't really need the previous part to do this.)

